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ABSTRACT

The paper describes the implementation of extensive
optimization capabilities in a general-purpose harmonic-
balance simulator. Two different optimizers suitable for
autonomous and forced circuits, respectively, are discussed in
detail, and their merits and limitations are compared. The
efficient numerical optimization of nonlinear microwave
circuits specified over a finite frequency band is demonstrated
for the first time.

INTRODUCTION

This paper describes the implementation of extensive
optimization capabilities in a previously reported general-
purpose nonlinear circuit simulator {1} based on the piecewise
harmonic-balance (HB) technique {2}. Two different
optimizers are exploited, which are particularly suitable for
autonomous and forced circuits, respectively. It is shown that
the integration of both methods in a unique software package
results in a very general and powerful nonlinear design tool,
which can be successfully applied to the optimization of both
single-frequency and broadband nonlinear microwave
subsystems. The direct optimization of broadband nonlinear
circuits is made possible by this package for the first time. In
this way nonlinear circuits can be numerically designed to
achieve given sets of performance specifications over a
frequency band in much the same way as it is customary for
the linear case.

The first optimization approach ("algorithm 1") was
reported for the first time in {3}, and is based on the idea of
treating the optimizable circuit parameters and the harmonics of
the state variables (SV) used to describe the electrical regime as
hierarchically equivalent problem unknowns. In other words,
an objective function encompassing both the design
specifications and the HB errors is simultaneously minimized
with respect to both the SV harmonics and the circuit
parameters {2, 3}. This leads to the simultaneous
determination of a circuit topology and of a steady-state regime
compatible with that topology and satisfying the design goals.

The second approach ("algorithm 2") is simply a
straightforward extension of the conventional linear
optimization strategy to the nonlinear-circuit case. A full
nonlinear analysis of the circuit is carried out each time the
objective function has to be evaluated, while the objective is
minimized with respect to the circuit parameters only. This
implies the nesting of two iterative procedures, which can
result in severe numerical inefficiency. In practice, the use of
this method is only warranted by modern techniques for the
computation of the exact sensitivities of the HB errors with
respect to the SV harmonics {4, 5}, and of the network
functions with respect to the circuit parameters {6, 7}.

The paper reviews the fundamental algorithmic aspects of
the two methods, tries to highlight the main advantages and
limitations of each one, and compares their numerical perfor-
mances in a typical microwave CAD application. The
suitability of both in view of the implementation of an
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efficient, general-purpose software tool for the numerical
optimization of broadband nonlinear circuits is also discussed
in detail.

ALGORITHMIC ASPECTS

According to the piecewise HB technique, a generic
nonlinear circuit is described as the interconnection of a linear
and a nonlinear multiport. Since the latter usually consists of a
set of nonlinear devices, the interconnecting ports will be
referred to as the "device ports". In steady-state conditions, all
time-dependent quantities have a same spectrum S consisting
of a finite set of discrete lines. The steady states are defined by
the solutions of the nonlinear algebraic system
EX,P)=0 @
where E is the set of the real and imaginary parts of all
harmonic-balance errors (at all frequencies of S and all device
ports), and X is the set of the real and imaginary parts of all
state-variables harmonics.

For optimization purposes, a set P of designable circuit
parameters is available in the linear subnetwork (and is
explicitly shown in (1) for convenience). The vector P must be
found in such a way that the solution of (1) satisfies a set of
gesign goals any of which can always be expressed in the
orm

_<F9x,Pp) @

If the HB errors are formulated in terms of current harmonics
at the device ports (e.g., {8}), then both the entries of E and

the network functions F¥ depend on X through the voltage
and current harmonics at the device ports, and on P through
the admittance matrix of the linear subnetwork, in both cases
via explicitly known algebraic relationships.

In order to implement algorithm 1, each design goal of the
form (2) is associated with the error function
w[EQ, - FOx, P) it F¥ < FQ,
EOX, P)= ©)
s ml) @)
0 ifF. <F

where w® is a suitable positive weight and the index i spans

all the assigned specifications. A one-sided least-pth objective
function {9} is then defined as

1/p
FopX, P) = {"E(X, »i’+ X [E9x, »T } @
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where ||+ | denotes the Euclidean norm and p > 0. To solve
the problem, the objective is simultaneously minimized with
respect to X, P until a minimum close enough to zero is
reached. Note that any optimizer always proceeds by discrete
steps: thus at some point during the iteration a vector P will be
reached lying inside the region where the design goals are met.
From there on, the optimizer will only work to obtain the
harmonic balance, without having to compromise between the
two constraints on the right-hand side of (4).

Although this algorithm was found to work satisfactorily
with numerical derivatives evaluated by perturbations {8}, the
implementation of exact derivatives results in a considerably
improved numerical efficiency, and is thus worthwhile. The
computation of the exact derivatives of the objective with
respect to the SV harmonics is immediate, since general exact
expressions for the derivatives of the voltage and current
harmonics at the device ports wrt. the SV harmonics are
available in the literature (e.g., {5}). The evaluation of the
exact derivatives wrt. the circuit parameters may be carried out
by conventional adjoint-network calculations {10].

From a mathematical viewpoint, algorithm 2 can be viewed
as the search for a set P of circuit variables for which the
design goals are satisfied in the best possible way, subject to
the constraint that the state lies on the manifold M=[X=X(P)]
implicitly defined by (1). In this case the HB error is
guaranteed to be zero at each function evaluation, so that a
generalized Jeast-p™ objective {9} can be defined. Each design
goal of the form (2) is now associated with the error function

EYx@), P) = w? . [ . FOx (@), P)] 5)

Then, if Emax is the maximum error (in the algebraic sense),
the objective function takes the form {9}

+ lip
{Z [EOx®@), P)]° } ifE_ 20
Fop®P)=

-1/p
- Z[-E“’(X(P),P)]"’} ifE_, <0

©®

where the superscript * indicates that the summation is
extended to positive errors only. The objective is minimized
with respect to P, and (1) is solved with respect to X prior to

each function evaluation to ensure the condition Xe M.

The computation of the exact derivatives of the objective
with respect to the circuit parameters is described in detail in
the Appendix.

PERFORMANCE COMPARISON
Both the optimization algorithms described in the previous
section were implemented in a previously reported general-
purpose HB simulator {5} making use of a quasi-Newton
iteration {11} to minimize the objective function. In this
section we discuss the observed numerical performance.

For general nonlinear circuit optimization, algorithm 2 is
usually superior to algorithm 1 in several respects.
Specifically, this happens when the set of circuit
configurations spanned by algorithm 2 during the iteration is
entirely contained in the region of the parameter space where
the Newton iteration is convergent and the solution of (1) is
unique. In such cases, algorithm 2 is faster than algorithm 1
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by a factor typically ranging from 4 to 8. On the other hand, if
during the optimization the Newton iteration fails, the
efficiency of this algorithm may be considerably impaired. It is
thus clear that, for the sake of a powerful and well-conditioned
optimization, any possible effort should be made in order to
improve the convergence properties of the Newton iteration. In
particular, this shows the interest of modern modeling
techniques (e.g., {12}) allowing the dynamic range of
Newton analysis to be expanded by several orders of
magnitude. The essential weakness of algorithm 1 is that it
tries to reach the harmonic balance by optimization, which is
well known to be an inefficient approach {4}. Furthermore,
algorithm 1 must find an absolute minimum (equal to zero) of
its objective function, while for algorithm 2 any parameter set
P for which the objective is negative is acceptable. Finally,
algorithm 2 is better from the viewpoint of user interaction,
since the iteration evolves through a sequence of physically
significant circuit states, allowing the network functions to be
monitored at each step. This is not true for algorithm 1, since
here the harmonic balance is only reached at the end of the
iteration. As an example, fig. 1 shows the results obtained
from the optimization of a FET frequency doubler having the
topology schematically shown in fig. 2. Curve a in fig. 1
shows the starting-point performance of the doubler, while
curves b and c give the final results of single-frequency
optimizations carried out with algorithm 1 and algorithm 2,
respectively (4 harmonics and 4 circuit variables). Curves b
and ¢ are qualitatively comparable; however, the optimization
required 190 sec with algorithm 1, and only 48 sec with
algorithm 2 on a VAX 8800. Note that the analytic
computation of the derivatives is essential for the numerical
efficiency of both algorithms. For comparison, the
optimization of the same kind of topology by algorithm 2 with
an all-numerical approach (i.c., with all sensitivities evaluated
by perturbations), would take about 7200 sec on the same
machine {13}.

The situation is different for some very important classes of
nonlinear circuits, such as oscillators (and, to some extent,
frequency dividers). First of all, oscillator analysis by the
Newton-iteration-based HB technique is not straightforward,
and only very recently has a general solution to this problem
become available {14}. Even so, the application of algorithm 2
to this kind of circuits is somewhat more problematic for the
following reasons. For an oscillator the system (1) always has
(i.e., for any P) a static solution with all but the DC
components of the state vector X equal to zero, while
solutions corresponding to oscillatory states only exist in some
region of the parameter space, say O, which is a priori
unknown. If the starting point P does not belong to O nor to
its boundary, the initial state is static, and so are all the states
belonging to a neighborhood of P,. The gradient of the

objective then vanishes at the initial point, and the iteration is
unable to start. Even if Poc-: 0O, one has to choose an initial

value of X for the Newton iteration which guarantees
convergence to the oscillatory state, otherwise the result will
be the same. Finally, in critical cases (e.g., VCOs operating
near the band edge {14}), P may fall outside O during the
optimization, or the Newton iteration may converge to the
static solution, which may lead to severe loss of computational
efficiency. All these difficulties are effectively overcome by
algorithm 1 because of the circumstance that the iterations need
not be solutions of (1). This implies that algorithm 1 can
provide a smooth specification-driven transition from any
initial state (including zero) to an oscillatory state, through a
sequence of physically meaningless, but nevertheless
acceptable iterations. This algorithm has been for many years
the only available tool for the direct numerical optimization of
microwave oscillators by the full HB approach, and has been



successfully applied to many design cases, including bipolar-
transistor and FET free-running oscillators {15, 16}, DROs
{17} and VCOs {14}. In our present package, algorithm 2 has
been integrated with algorithm 1, in order to retain the peculiar
advantages of both. The optimization is started by algorithm 1,
which allows a completely arbitrary initial point to be selected
for both the circuit parameters and the SV harmonics. Then,
after a suitable number of quasi-Newton iterations, an
automatic switchover to algorithm 2 takes place, in order to
exploit the superior convergence properties of the Newton
iteration in the vicinity of the solution. The resulting procedure
;slvcry robust, and typically 2-3 times faster than algorithm 1
one.

BROADBAND OPTIMIZATION

The optimization of linear circuits operating over a finite
band of frequencies is available as a matter of course in all
linear CAD programs. On the contrary, the numerical
optimization of broadband nonlinear circuits had never been
reported in the technical literature at the time of this writing.
In a sense, a nonlinear circuit is always a broadband circuit
because the spectrum of the steady-state waveforms always
includes several discrete lines and thus covers a finite
bandwidth. For our present purposes, however, we shall
define as "broadband" a circuit whose performance is
simultaneously specified for a number (say R) of independent
steady-state regimes having different spectra Sl, S2, wwey Sp.
Such spectra are usually (but not necessarily) obtained from
one another by changing the frequencies of one or more of the
exciting sinusoidal signals. In turn, an independent state vector
X, is associated with each S,, so that the set of problem

unknowns includes Xl, Xz, o XR, and P.

Algorithm 1 can be formally extended to cover this case,
simply by assuming that the index i in (3), (4) spans all the
specifications at all the spectra of interest. However, this
usually turns out to be impractical because of the very large
number of simultaneous unknowns, and because of the need
to simultaneously find the harmonic balance by optimization at
a number of different spectra.

On the other hand, algorithm 2 can handle the broadband
case most easily and efficiently. In this case, the state vectors
X, are effectively decoupled, in the sense that a separate

Newton iteration with respect to each X, is carried out prior to

every function evaluation. As in the previous case, the
objective is still defined by (5), (6) with the index i spanning
all specifications and all spectra of interest. Note that this is
once again a plain extension of well-known linear optimization
concepts to the domain of nonlinear circuits.

Broadband optimization was implemented in our HB
simulator making use of algorithm 2 with excellent results.
As an example, the outcome of the broadband optimization
over a 25% band of the same multiplier previously considered
is shown as curve d in fig. 1. This optimization was carried
out with 7 fundamental frequencies, 4 harmonics per
fundamental, and 11 circuit variables, starting from the results
of the narrow-band design. The optimized spectral purity of
the output signal and input return loss were higher than 18 dB
and 10 dB, respectively, across the band of interest. The
required CPU time was about 850 sec on a VAX 8800. The
numerical efficiency is thus sufficient to warrant a systematic
use of this technique at the workstation level.

CONCLUSION
In conclusion, the integration of two different, and to a
large extent complementary, optimization approaches into a
unique harmonic-balance simulator has ensured extensive
optimization capabilities of broad classes of nonlinear
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microwave circuits, both single-frequency and broadband,
particularly in view of the ability to choose the optimization
strategy that best fits any specific design problem. A major
achievement of this paper is that the numerical optimization of
nonlinear circuits operating over a frequency band has been
demonstrated here for the first time. As shown by the example
reported above, the procedure is very efficient, and thus opens
the way to the straightforward design of some modern MMIC
devices such as multioctave distributed mixers and power
amplifiers. This effectively fulfills the gap between available
linear- and nonlinear-circuit optimization capabilities.

APPENDIX
In this appendix we briefly outline the approach to the exact
computation of the circuit sensitivities to be used inside
algorithm 2. By means of (5) and (6), the derivatives of the
objective with respect to a generic circuit parameter P are
directly related to the derivatives of a generic network function

F wrt. the same quantity. Any such derivative will be
denoted by the symbol D when it is taken on the manifold M.
We have

o) )
1) IR

P=const

(A1)

DE® _ (arVY
DP ~ (W)

X=const

(i)
The vector (%FY)

derivative rule. The derivatives of F¥) wrt. the voltage and

current harmonics at the device ports are obtained explicitly

from the linear subnetwork analysis, and in turn the exact

derivatives of the voltage and current harmonics wrt. the state-

variables harmonics are evaluated by the general formulae
(i)

reported in {5}. Similarly, the scalar %;,— is

X=const

computed by first finding explicitly the derivatives of FP wrt.
the linear-subnetwork admittance parameters, and then
deriving the latter wrt. P by standard adjoint-network
calculations {10}. Finally, by differentiating (1) we get

can be computed by the composite-

P=const

%— J-l . aE
DP - oP

X=const

(A2)

where J is the Jacobian matrix of E with respect to X. Note
that a factorization of this Jacobian is automatically known
from the Newton iteration performed to analyze the nonlinear
circuit for the current set of parameters P, and does not require
any additional computation. If the HB errors are formulated in
terms of current harmonics at the device ports (e.g., {8}), E is
a linear function of the admittance matrix Y (for constant X),

is immediately expressed by

X=const

so that the vector ?rgl

oY
means of 35
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Fig. 1 - Optimization of the FET frequency doubler shown in Fig. 2 : (a) Starting point. (b) Single-frequency design by "algorithm 1".

(c) Single-frequency design by "algorithm 2". (d) Broadband design.
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Fig. 2 - Schematic topology of a broadband FET frequency doubler
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